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Gold Nanoparticles and Their Polymer Composites: Synthesis, Characterization and 

Applications 

Nidhi Joshi 

Abstract 

Gold nanoparticles are excellent candidates for all the biomedical applications due to 

their size and shape dependent optical and physiological properties. In this study, gold 

nanoparticles were synthesized chemically for bio-application. It was observed that the 

size and shape of gold nanoparticles depend strongly on the concentration of chemical 

solution, type of reducing agent used in the reaction, temperature of the solution and 

stabilizing agent for reaction. Transmission electron microscopy (TEM) has been used 

extensively to determine the size and shape of the gold nanoparticles. Optical properties 

of the size and shape selected nanoparticles were studied using UV-vis 

spectrophotometer in absorption mode. The chemically synthesized gold nanoparticles 

were observed to show excellent absorption property which is reflected by the presence 

of the characteristic surface plasmon resonance (SPR) band peak. The SPR peak was 

found to be predominantly dependent on the size of nanoparticles. We have observed a 

strong red shift with increasing the size of gold nanoparticles. The position of the SPR 

peak was also observed to change with shape of gold nanostructures. 

Synthesis and characterization of the composites of gold nanoparticles and Poly (O-

anisidine) (POAS) have been carried out in this thesis. Gold-POAS materials system was 
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characterized using UV-vis spectroscopy, TEM, Fourier Transform Infrared 

Spectroscopy. 

The chemically synthesized gold nanoparticles were successfully utilized for the study of 

Respiratory Syncycial Virus (RSV) interaction. Gold nanoparticles were found to inhibit 

the RSV infection. The electrochemical behavior of gold nanoparticles was studied and 

their potentials for biosensing applications were tested. Cyclic voltaammetry was 

performed for the detection of dopamine and ascorbic acid using gold nanoparticles of 

different sizes. Interaction of gold nanoparticles with Bovine Serum Albumin (BSA) has 

been studied via absorption spectroscopy and TEM measurements. The absorption 

spectra of the GNP-BSA show remarkable shift in SPR band peak towards high 

wavelength. Catalytic properties of the gold nanoparticles were studied by using them as 

a catalytic activator for the gas sensing applications. 
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Chapter 1: Introduction 

1.1 Metal Nanoparticles 

Materials such as multifunctional supermolecules, carbon nanotubes, graphene, and metal 

nanoparticles have been synthesized and employed routinely as basic building block for 

several electronic and optical devices. Integration of nanoscale building blocks such as 

nanoparticles, nanorods and nanotubes into functional assemblies and further into 

multifunctional devices can be achieved via nanotechnology for several applications. 

Further, the properties of nanomaterials depend on its shape and size.  In particular, metal 

nanoparticles are very interesting nanoscale materials with an ease of synthesis and 

modification. The advantages of metal nanoparticles over other material include its strong 

optical and electronic properties [1-7]. The dimensions of the nanoparticles vary between 

1 nm to 100 nm and these nanoparticles behave like a whole unit in terms of their 

properties and transport phenomenon. Furthermore, the properties of nanoparticles are 

very different than the bulk materials, thereby; nanoparticles are suitable candidates for 

various biomedical applications. 

1.2 Gold Nanoparticles 

Of the various metal nanoparticles reported in the literature [1-7], gold is the promising 

candidate due to its excellent surface properties that can be exploited in biotechnological, 
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optical and electrochemical applications. The advantages of the gold nanoparticles 

include non-toxicity, strong scattering length, bio-conjugation and long-term stability. 

These characteristics are essential for a stable and sensitive biosensing platform. Gold 

nanoparticles offer excellent optical properties and exhibit a spectral shift upon varying 

their size and shape. Gold nanoparticles exhibits a characteristic absorption peak at 525 

nm and this peak will shift towards the higher wavelength region by tuning the size and 

shape of the nanoparticles. Optical properties of the Au nanoparticles can be varied by 

controlling their size and also by modifying their surface characteristics. The size and the 

surface characteristics are related to the surface to volume ratio. 

The electron transfer or the conductive behavior of the metal nanoparticles has been 

studied recently within the context of reduced electronic device size features to the 

nanoscale level. Unlike bulk materials, the conductivity is not based on the band structure 

but shows single electron tunneling through discrete energy level. Gold is often 

considered as a suitable material for electronic devices, because, gold nanoparticles can 

be synthesized with diameters ranging between 2 nm and 100 nm. On the other hand, the 

highly reactive surface of the gold can be very easily modified with polymers, silicates 

and biomolecules. As a result, gold nanoparticles are widely employed as a platform to 

design a stable and sensitive biosensor. 

In this work, we have synthesized gold nanoparticles of various size and shape by 

different techniques such as sodium citrate reduction method, anisotropic synthesis by 

using PVP and biocompatible gold nanoparticles.  Following this, we have then evaluated 

the interaction of gold nanoparticles with biomolecules 
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1.3 Optical Properties of Gold Nanoparticles 

1.3.1 Surface Plasmon Resonance  

Surface Plasmon Resonance (SPR) is an optical phenomenon caused by the interaction of 

the surface Plasmon with the incident electromagnetic radiation at a resonant frequency.  

Metals exhibit plasmon effect because they have a high density of free electrons. The 

sensitivity of the plasmon depends on particle size, shape, the refractive index of the 

medium and the dielectric constants of the metal. For several metals the plasmon energy 

can be correlated to the ultraviolet photon energy. The excitation of surface plasmon by 

light is sometimes denoted as a localized surface plasmon resonance (LSPR) for the 

nanoscale metallic systems. The SPR is responsible for the bright red color of gold 

nanoparticles in the visible region of the electromegnatic pectrum. The SPR spectrum of 

the gold nanoparticles comprises of absorption and scattering of photons which depends 

on the size, shape and the surrounding environment. In metal nanoparticles, the surface 

polarization occurs due to the local field effect around the particles which cause the 

modification in their dielectric function. The response of the nanoparticles present in the 

medium can be described by Maxwell-Garnett dielectric function as follows; 

                             (1) 

In equation (1),  is the dielectric function of metal and  represent the density of 

particles. For resonance to occur the condition should be εm=-2ℜe (ε0) as shown in figure 

1.1 [8]. 
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Figure 1.1 Surface Plasmon Resonance of Metal Nanoparticles 

The SPR is very important to study the optical properties of gold nanoparticles.The 

characteristic SPR peak of gold nanoparticle occur between 525 nm and 530 nm.  

However, a shift in the SPR peak towards the higher wavelength region occurs with 

change in their shape from nanoparticle to nanorods. Furthermore, SPR is also widely 

employed to study the interaction of gold nanoparticles with biomolecules.  The mobility 

of electrons in the presence of an electric field depends on the band gap of the material.  

In the case of a metal, the valence band and the conduction band overlap and the excited 

electron participate in the presence of an electric field as shown in Figure 1.2 [9]. 
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Figure 1.2 Schematic of the Overlapping of Energy Bands in Metal. 

Figure 1.2(b) represents the Fermi level. Energy bands are empty at absolute zero 

temperature. The excitation of an electron from valence band to conduction band occurs 

(a) 

(b) 
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by the absorption of all the wavelengths of incident light by metal surface.  Most of the 

incident light is immediately re-emitted at the surface, creating the metallic cluster as 

seen in gold, silver, and copper. 

1.4 Composites of Polymer-Gold Nanoparticles 

Recently, the applications of gold nanoparticles have been investigated extensively. 

Studies on conducting organic polymer material are gaining much attention in the area of 

sensors and molecular electronics [10-13] as described by Valter et al. [10], polyaniline, 

polypyrrole and polythiophene together with fullerenes are promising candidates for 

conducting organic polymers. According to Balazs et al. [14], the composites of polymers 

and the nanoparticles offer new opportunities for engineering flexible materials that 

display advantages in
 
electrical, optical and mechanical properties. Of all available 

conducting polymers, Poly (o-anisidine) (POAS) and Polyaninline (PANI) has numerous 

applications in electronics, optical devices, biosensors and corrosion protection.  The 

structure of the POAS is shown in figure 1.3. The structural, optical and electrochemical 

properties of this composite material of GNPs-POAS were studied by UV-Vis 

spectroscopy, TEM and Cyclic voltammetry. 
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Figure 1.3 Schematic Representations of POAS in Emeraldine Base 
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Chapter 2: Experimental Methods 

 

2.1 Introduction 

The focus of this chapter is on the experimental approach and characterization techniques 

employed in this study. In this work, we have employed a chemical route for the 

synthesis of gold nanoparticles. In addition, we have also utilized various procedures for 

the shape selective nanoparticle synthesis and GNPs-POAS synthesis. 

2.2 Materials 

Hydroauric acid (HAuCl4.3H2O), sodium citrate, PVP (poly vinyl pyrolidone) and L-

glutamic acid, Bovine Serum Albumin (BSA), Chitosan,  N-methyl aniline,  Chloroform, 

and Ammonium persulphate were all purchased from Sigma Aldrich(USA).  

2.3 Synthesis of Gold Nanoparticles (GNPs) 

In the literature, there are several methods available for the synthesis of gold 

nanoparticles [15-27]. However, in this work, we have employed only a few methods to 

synthesize the gold nanoparticles and are discussed below. 

2.3.1 Citrate Reduction Method 

This method involves the reduction of 0.01 M hydroauric acid (HAuCl4) by citrate buffer.  

Briefly, 0.01 M HAuCl4 (5mL) was mixed with DI water (100mL) and boiled.   
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Following this, 200 mg sodium citrate solution was added to the reaction mixture with 

constant stirring. The formation of gold nanoparticles will be complete when the color of 

the solution becomes wine red from its initial yellow color.  The solution was further 

heated for additional 10 minutes. 

2.3.2 Bio-Compatible Gold Nanoparticles 

Biocompatible GNPs were synthesized using Chitosan as follows; initially, the GNPs 

were synthesized by the reduction of hydroauric acid (HAuCl4) in L-glutamic acid. 

Briefly 0.01 M HAuCl4 (5mL) is dissolved DI water (50mL) and heated until it boils.   

Later, 10mL of 25mM L-glutamic acid is added to the reaction mixture with constant 

stirring. A color transition from yellow to red indicates the formation of gold 

nanoparticles. Following this, the solution was kept at room temperature. Next, 5mL of 

1.0% chitosan was added to 20 ml of the gold solution with stirring and as a result the 

solution displayed a visible change in its color following chitosan addition.  

2.3.3 Synthesis of GNPs Stabilized with Poly Vinyl Pyrollidone 

In this method, we employ Poly-Vinyl-Pyrollidone (PVP) as a stabilizing agent for the 

GNP synthesis due to its excellent adsorption properties [16]. Gold nanoparticles in 

different shapes such as triangle, rectangle, pentagon and cubes can be synthesized using 

PVP. To achieve this, 1.0g of PVP was dissolved in 60mL of DI water and the solution 

was boiled. Later, 5mL of sodium citrate solution (prepared by mixing 647mg in 250mL 

of DI water) was added to the PVP solution in a hot plate and allowed to remain in the 
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hot plate for 10 min. Following this, HAuCl4 (2.0 mL) was added to the solution with 

constant stirring.  

 

Figure 2.1 Schematic of the Chemical Assembly for Nanoparticles Synthesis 

2.4. Synthesis of Composites of Polymer-Gold Nanopaticles 

The synthesis of composite material was done by dissolving (0.2 M) of O-anisidine in 

150 mL of 1.0 M HCl and the solution was kept aside for 1 hour. After an hour, 15 mL of 

0.01 M HAuCl4 was added to the above mixture with constant stirring for 10 minutes and 

kept aside (solution A) then 0.05 M ammonium persulphate solution was dissolved in 50 

mL of 1.0M HCl with constant stirring for 15 min (solution B). After preparing these two 

solutions, solution B was added in drops to solution A at ice-cold condition and stored at 

room temperature for 24 hours. This resulted in the formation of a dark green precipitate. 

Next, the precipitate was filtered off and then washed subsequently with DI water and 

diethyl ether to remove all the oligomers. The resulting gold- POAS was dried at 100 
o
C.  
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The dried gold POAS powder was then dissolved in 1.0 M NaOH for 12 hours with 

subsequent washing in DI water and methanol (CH3OH). The dark green powder thus 

obtained was the emeraldine base form of the GNPs-POAS conducting polymer [14]. 

 

Figure 2.2 Schematic of the Oxidative Polymerization 

2.5 Characterization Techniques 

Various techniques employed for the characterization of GNPs were discussed in the 

following sections. 

2.5.1 UV-vis Spectrophotometer 

In UV-Vis spectrophotometer, interaction between sample (film, liquid solution or a solid 

material) and monochromatic light takes place resulting in the display of variables such 

as transmittance, reflectance and absorbance. UV/Vis spectrophotometer was employed 

in this work to study the absorption spectra and surface plasmon resonance (SPR) in gold 

nanoparticles. SPR spectroscopy is a highly sensitive technique often employed to study 

the optical properties of the metal nanoparticles and their sensitivity. The technique 
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requires a specialized set-up or arrangement which includes an electromagnetic radiation 

source generator, a dispersion device selecting a particular wavelength, a chopper 

dividing the path of light and a detector to measure the intensity of the radiation. 

Interaction between electromagnetic radiation and the surface plasmon at the particle 

interface and the surrounding medium results in the SPR phenomenon. Surface Plasmon 

refers to a collective oscillation of the conduction electrons present in the particle [4, 5] 

and as a result a strong absorption peak will be witnessed in the absorption region of 

metallic nanoparticles. For example, in the case of gold nanoparticles, its characteristic 

peak occurs at about 525 nm. The distinctive bright color of metal nanoparticle is 

attributed to the surface plasmon absorption band. [6] The SPR is very sensitive to the 

size and shape of the particles. Therefore, a small change in surface geometry affects the 

electrical density on the particle surface and causes them to oscillate with different 

frequency. This is due to the fact that, the optical properties of the metal nanoparticle is 

an intrinsic function of its morphological features [7]. Based on this, the absorption 

spectrum of the gold nanoparticles can be obtained between the 520 nm and 1000 nm 

range by tuning the geometry of the particle. In addition to the particle size and shape, the 

SPR peak is also sensitive to the dielectric properties of the surrounding medium [28]. 
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Figure 2.3 UV-vis Spectrophotometer Set Up in USF 

2.5.2 Transmission Electron Microscopy 

Transmission electron microscopy (TEM) is the primary technique employed for 

determining the particle size, shape and the size distribution. TEM utilizes electron beam 

as light source that passes through all the lenses and apertures before reaching the 

specimen to be analyzed as shown in figure 2.4 [29]. The much lower wavelength makes 

it possible to get a resolution that is thousand times better than with a light microscope. 

TEM operates require electrons instead of light. In TEM, the electron gun emits the 

electrons and passes through the vacuum and then through a number of apertures and 
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electromagnetic lenses that focus the electrons into a very thin beam. This electron beam 

is then focused on to the object to be analyzed. The electrons get absorbed and reflected 

from the specimen depending on the density of the material and the transmitted electrons 

gives the magnified image of the specimen on a fluorescent screen. Figure 2.5 is a typical 

TEM employed in our work.  

 

Figure 2.4 Optical Components in TEM 
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Figure 2.5 Schematic of Transmission Electron Microscopy in USF 

2.5.3 Fourier Transform Infrared Spectroscopy 

This technique is primarily used to identify the organic molecule or the presence of 

certain functional groups in the molecule. Infrared spectroscopy works in the IR region of 

the electromagnetic spectrum. When IR radiation is passed through a sample, the 

molecules absorb certain frequency of this radiation that is characteristic to their 

structure. The obtained spectrum then displayed the molecular absorption and 

transmission, and gives the molecular fingerprint of the sample. The different 

components of the IR spectroscope include an IR Source, Michelson Interferometer and a 

detector.  
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The advantage of IR spectroscopy is that it is very sensitive and a rapid technique for 

analyzing the composition of the given sample with better signal to noise ratio. Infrared 

spectrums gives information about the chemical bonding of the atoms, which is usually, 

represents by the absorption band caused by the vibration between the atomic bonds of 

the sample. Each material is composed of different combination of atoms, so different 

compounds produce different infrared spectrum. Therefore, infrared spectroscopy can 

result in a positive identification (qualitative analysis) of every different kind of material. 

In addition, the size of the peaks in the spectrum is a direct indication of the amount of 

material present [54].  

    

Figure 2.6 FTIR. Sample Holder, Sample Chamber 

Figure 2.6 represents the schematic of the beam path in FTIR and the sample holder in 

the FTIR chamber [30]. 

2.5.4 Atomic Force Microscopy  

AFM is a technique used to analyze the surface of materials with magnifications up to 

10
8. 

It provides the three dimensional images from the conductive and non-conductive 
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sample with an extraordinary topographic contrast. An atomically very sharp silicon 

nitride tip connected to the end of the cantilever is used to scan the sample surface, while, 

maintaining the tip at constant height or force above the surface. The modes of operation 

in AFM include contact mode, non-contact mode and the tapping mode.  In contact mode 

(also known as repulsive mode) the AFM tip come in close contact to the sample surface. 

The tip and the sample interact due to quantum mechanical exclusion principle. This 

mode gives the best resolution of the sample surface but the disadvantage of this mode is 

that it can deform the sample surface. In the non-contact mode, the cantilever vibrates at 

a certain distance (10 to 100 A) and the topographical image is obtained by the Van-der 

walls magnetic force with very poor resolution. In the tapping mode, the tip is brought 

close to the sample surface so that it cannot damage or deform the sample. The surface 

characteristics with resolution ranging from 100 µm to less than 1µm can be 

accomplished by this technique. Figure 2.7 shows the schematic of the atomic force 

microscope mechanism of operation and different modes of operations [31]. In the 

present work, we employ the AFM techniques to probe the surface morphology of the 

gold nanoparticles. 
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(a) 

 

(b) 

Figure 2.7. Schematic of the Modes of Operation in AFM 
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2.5.5 Surface Enhanced Raman Spectroscopy 

Surface-Enhanced Raman spectroscopy (SERS) is a technique to enhance the Raman 

signal magnitude by an order of 10
4
 to 10

6
. This technique is mainly used to detect a 

molecular signal at a very low concentration and to study the surface of the material. 

Electromagnetic and chemical mechanisms are believed to be responsible for the SERS 

enhancement. Electromagnetic theory is based on the excitation of the surface plasmon, 

whereas, the charge transfer mechanism involves the bonding between the metal and the 

analyte and gives the chemical enhancement signal. Figure 2.8(a) represents the 

schematic of the nanoparticle based SERS and Figure 2.8(b) shows the Raman signal of 

the analyte in nanoshell (red) and SERS signal (blue) [32]. 

 

Figure 2.8 Schematic of Sample Geometry for Nanoparticle Based SERS 

2.5.6 Electrochemical Voltammetry 

Electrochemical voltammetry was usually performed in a three electrode electrochemical 

cell. 
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The three electrode system includes (a) a working electrode, (b) reference electrode and 

(c) an auxiliary electrode. The working electrode is the electrode at which our process of 

interest takes place and the auxiliary electrode is employed to complete the circuit. The 

reference electrode is used as reference against which the potential was applied or 

scanned between two limits. The surface area of the counter electrode must be high in 

order to achieve the impedance primarily from the working electrode. Usually, Platinum 

wire will be used as the counter electrode whereas gold, glassy carbon and platinum are 

used as working electrode. In the present work, we employ glassy carbon electrode 

modified with the gold nanoparticles as the working electrode, an Ag|AgCl reference 

electrode in all the electrochemical experiments. 

2.5.6.1. Cyclic Voltammetry 

A typical triangular voltage waveform applied to the working electrode during the cyclic 

voltammetric experiments is schematically represented in Fig 2.9 [33]. Here, the linear 

voltage is applied from t0 and was steadily ramped until t1 and at t1 the ramp was reverted 

back to get the initial potential value at t2 [33]. 
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Figure 2.9 Typical Triangular Wave Form Applied to the Working Electrode. 

Next, we briefly define a typical cyclic voltammogram in Figure 2.10 [33].During cyclic 

voltammetry, the potential was scanned between two limits from the portion labeled A, 

until D and then reversed back to A. During this scan, a redox reaction will occur and this 

process will give rise to an increase in the current magnitude and this portion of the wave 

is called cathodic wave. Further, the maximum flow of electrons is observed at point C 

and after the point C, though the potential is applied, there will be no current observed 

beyond this due to the depletion of the redox species at the electrode. Further, the 

diffusion of the species toward the electrode should occur before reduction. In this case, 

the diffusion is slower than reduction and therefore there will a decrease in the current 

flow between the points C and D. On the other hand, the points E, F, and G describe the 

reverse process Furthermore, the redox potential can be obtained from a voltammogram 

by calculating the average value of the anodic and cathodic peaks. For example, for the 
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voltammogram shown in Fig.2.10, the one-electron (E1,1/2) and two-electron (E2,1/2) redox 

potentials can be calculated as: 

E1,1/2  =   (E1
c
 + E1

a
) / 2  and E2,1/2 =  (E2

c
 + E2

a 
) / 2                  (1) 

In equation (1), the subscript 1/2 represents the potential obtained approximately at the 

half-height of the cathodic and anodic peaks (and this is sometimes referred as half-wave 

potential). At these points the concentrations of the reduced and oxidized species are 

equal. However, it is to be noted that in this context concentration refers to the 

concentration of a given species on the electrode but not in the bulk solution.  In certain 

cases, where only one-electron reduction occurs, only one maximum is observed in the 

cathodic wave and one minimum in the anodic waves. When both the anodic and 

cathodic waves are symmetric with respect to each other, the redox process is said to be 

reversible. However, if they are not symmetric, the redox species may undergo a 

chemical reaction and will not be observed during the reverse sweep [33]. 

Cyclic voltammetery is a commonly employed electrochemical technique, during which 

the potential of the working electrode is ramped in a linear fashion verses time. After 

reaching the initial potential, the potential of working electrode is reversed and is called 

one cycle. Cyclic voltammetry can be performed for a single cycle or a series of cycles 

depending on the sensitivity as required by the analysis. A plot of the current magnitude 

at the working electrode verses the applied voltage will give rise to a cyclic 

voltammogram. Furthermore, the utility of cyclic voltammetry is strongly dependent on 

the analyte being employed and the analyte has to be redox active within the applied 

potential range.  
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The redox reaction at the surface of the working electrode will certainly bring about a 

mass transfer of the material at a definite applied voltage. The advantages of the cyclic 

voltammetery include highly sensitivity to the traces of ionic species, non-destruction and 

can be employed at a wide dynamic range. 

In the present work, gold nanoparticles of different sizes and shapes were employed as a 

substrate for all the voltammetric measurements in different redox probes such as 

hexammineruthenium (III) chloride,and potassium ferricyanide. Further, these electrodes 

modified using gold nanoparticles were then employed for the detection of 

neurotransmitters such as dopamine and ascorbic acid. 

 

Figure 2.10 A Typical Cyclic Voltammogram of One Electron Transfer 
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Figure 2.11 Typical Cyclic Voltammogram of Two Electron Transfer 

In the present work, gold nanoparticles of different sizes and shapes were employed as a 

substrate for all the voltammetric measurements Two different redox probes such as 

hexammineruthenium (III) chloride and potassium ferricyanide has been utilized for the 

experiment. Further, these electrodes modified using gold nanoparticles were then 

employed for the detection of neurotransmitters such as dopamine and ascorbic acid. 
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Chapter 3: Structural and Optical Properties of Gold Nanoparticles 

3.1 Introduction 

The structural and optical properties of gold nanoparticles synthesized by the chemical 

route were described in this chapter. The main focus of this chapter is to characterize the 

GNPs. Synthesis of GNPs at different conditions (such as temperature, reducing agent 

and concentration) results in the variation of gold nanoparticles morphology which in 

turn displays a remarkable difference in the optical properties. The characterization of the 

composites of gold nanoparticles-POAS was studied using UV-Vis, TEM, FTIR and 

cyclic voltammetry. 

3.2 Characterization of Au Nanoparticles 

Gold nanoparticles were studied by different techniques discussed below. 

3.2.1 Absorption Spectroscopy 

The absorption spectra of gold nanoparticles were obtained using UV-vis 

spectrophotometer. This measurement was performed using the gold nanoparticle 

solution within the quartz cell along with the reference cell. The characteristic plasmon 

resonance absorption band for GNPs occurs at 525 nm in the visible region of the 

electromagnetic spectrum. Figure 3.1 shows the absorption spectra of 20nm gold 

nanoparticles with surface plasmon resonance band at 529 nm. It is well known that the 
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optical properties of metal nanoparticles are strongly dependent on the morphology of the 

nanoparticles [16]. The size analysis of the GNPs was performed by visually analyzing 

the color of the nanoparticle solution. The color transition from deep red to bluish purple 

indicates the formation of bigger particle due to SPR properties of the gold nanoparticles.  

The SPR properties of the nanoparticles were displayed in the visible region of the 

electromagnetic spectrum [34] When the nanoparticles are exposed to the 

electromagnetic radiation, a part of the wavelength get absorbed and a portion of it were 

reflected by these particles and the remaining reflected portion of the wavelength was 

responsible for the intense bright color of the nanoparticles. 

 

Figure 3.1 Absorption Spectrum of the Gold Nanoparticles 
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Figure 3.2 represents the absorption spectra obtained for the gold nanoparticles 

synthesized by the citrate reduction method. The variation in the absorption spectra is due 

to the particle size variation, which is determined by amount of sodium citrate being 

used. As the size of particle increases the SPR displays red shift. Figure 3.3 represents 

different gold nanoparticle solutions. All the nanoparticles are synthesized chemically. As 

the size of gold nanoparticles increases the solution of gold nanoparticles displays 

remarkable changes in the color from red to purple. 

 

Figure 3.2 UV-Visible Absorption Spectrum of the Gold Nanoparticles Synthesized by 

Citrate Reduction Method. 
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Figure 3.3 Images of Gold Nanoparticle Solutions 

Figure 3.3 represents the images of different gold nanoparticlesSolutions which is 

directly related to the size of gold nanoparticles. Figure 3.4 represents the absorption 

spectrum of the gold nanoparticles synthesized by using PVP with size ranging from 10 

nm to 60 nm. Further, it displays remarkable variation in the surface plasmon band, since 

the optical behavior of the gold nanoparticles was based on the shape and size of GNPs 

[16]. Furthermore, the surface plasmon peak shifts towards the higher wavelength as the 

shape and size of the GNPs varies from nanosphere to nanoctagon. 
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Figure 3.4 Absorption Spectra of Gold Nanoparticles (~527 nm, 550 nm and 574 nm.) 
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Figure 3.5 UV-vis Spectra of Bio-Compatible Gold Nanoparticles. 

As shown in the figure 3.5 the absorption spectra of gold nanoparticles synthesized by 

using chitosan as a stabilizing agent act as biocompatible since chitosan is a bio-polymer 

and responsible for the transportation of some biological objects including some drugs. 

Since chitosan does not show any optical activity so the observed change in the SPR band 

of GNPs (523 nm) after the addition of chitosan is due to the change of the dielectric 

variation [35]. 

3.2.2 Morphology Analysis of GNPs (TEM)  

Transmission Electron Microscope was used to study the morphology of gold 

nanoparticles. A drop of the GNPs solution is casted on the TEM grid and allowed to dry 

in air before performing the TEM measurement. Further, care must be taken in order to  

(a)- Chitosan 

(b)-GNPs 

(c) –Chitosan-
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avoid the excessive spill of organic surfactant on the GNPs sample; otherwise, it will be 

difficult for the electron beam to pass through the sample that surrounds the 

nanoparticles. The morphology of the GNPs is characterized by the transmission electron 

microscopy. TEM images of some samples of gold nanoparticles obtained chemically 

were shown below. Figure(s) 3.6, 3.7, 3.8, 3.9 and 3.10 are the TEM images of the gold 

nanoparticles synthesized by citrate reduction method and appear to be boot shaped and 

spherical in shape with an average size about of 20 nm and ~500 nm. Figure 3.11, 3.12 

and 3.13 represents the TEM images of the nanoparticles synthesized by using PVP and 

resembles pentagon, triangle and octagon with a size range from 20 nm to 200 nm. It is 

evident from the TEM study that the nanoparticles of different sizes and shape can be 

obtained via the chemical synthesis. 

Figure 3.6 TEM Images of the Gold Nanoparticles (Boot Shaped) 
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Figure 3.7 TEM Images of GNPs (~5 nm-7 nm) 

 

Figure 3.8. TEM Images of GNPs (~10 nm) 

 

(a) ~10nm 



www.manaraa.com

 

33 
 

 

Figure 3.9 TEM Images of GNPs (~20 nm) 

 

 

Figure 3.10 TEM Images of GNPs (~20 nm-30 nm) 

 

(b)~ 20nm 

(c) ~20-30nm 
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Figure 3.11 TEM Images of GNPs Nanocubes (~200nm) 

 

 

Figure 3.12 TEM Images of GNPs (Nanotriangles, Octagons~50 nm-60 nm) 

 

 

~200nm 

~50-60nm 
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Figure 3.13 TEM Images of GNPs (Cubes, Pentagon ~ 100 nm). 

 

 

Figure 3.14 TEM Image GNPs (~10 nm-20 nm) 

~100nm 

~10-20 nm 
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The following table shows the different parameters utilized during the synthesis of gold 

nanoparticles and resulting nanostructure size. 

Table 3.1. Gold Nanoparticles: Synthetic and Characterizing Parameters 

Volume of (0.01M) 

HAuCl4 

Concentration of 

Sodium citrate 

PVP (gm) L abs max 

     (nm) 

Size (nm) 

 

 

   10ml 647/250ml DI 1gm/60ml 550nm 50-100nm 

   10 ml  400mg/100ml DI 0  514nm ~7to 10nm 

   15 ml 340 mg/100ml DI 0  526nm  10nm 

   15 ml 320 mg/100 ml DI 0  525nm 10 ~20nm 

   10 ml 300 mg/ 250 ml DI  0.8gm/60ml 574nm 500nm 

3.2.3 SERS  

The SERS of the gold nanoparticles shows peak enhancement of the material present in a 

tiny amount of sample. The SERS of different samples of gold nanoparticles was 

performed in the Argon/Krypton Laser (HORIBA JOBINYVON). The wavelength 

employed in this work was 647 nm, a 20x objective in 3 acc operational mode. The 

experiment was performed by irradiating the solution of gold nanoparticles with the laser 

light and the results were recorded by a spectrum of the scattered light. The optical 

properties of the nanoparticles affect the scattering of the light which gives the 

characteristic vibration fingerprint of the molecules present. As described by the Hu’s 

group [17], the SERS intensity of the nanoparticles was strongly dependent on the 

morphological features. As the sharp edges within the nanoparticles increases, the SERS 

activity increases too. Our SERS characterization results indicated that the bigger 



www.manaraa.com

 

37 
 

nanoparticles like pentagon, triangles and octagon showed intense SERS activity than the 

smaller spherical particles. The SERS of the protein adsorbed on the different sized 

nanoparticles and shape produce different SERS frequency, which gives the idea of the 

protein-nanoparticles interaction [17, 18]. 
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Figure 3.15. SERS of 5 nm Gold Nanoparticles 
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Figure 3.16 SERS of 10 nm Gold Nanoparticles 

SERS analysis of different sized gold nanoparticles (7nm, 10nm, 20 nm) has been 

performed in this work. The SERS of these three samples of gold nanoparticles displayed 

main peaks at 885 cm
-1

 (NH2), 1079 cm
-1

 (C–C and C–N stretch) , 1335 cm
-1

 (NH2–CH2 

twist) and 1573-1599  cm
-1

 for -COOH asym as shown in figure 3.16. Further, the SERS 

of gold nanoparticle sample displayed reproducible spectra with variations in peak 

intensity (intensity varies between 7 nm and 20 nm) 
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3.2.4 Atomic Force Microscopy  

Next, the surface morphology of the gold nanoparticles was studied by AFM under 

tapping mode. The AFM micrograph in 2D is shown in figure 3.17. 

 

 

Figure 3.17 AFM Images of Gold Nanoparticles 
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3.2.5 Electrochemical Characterization of GNPs 

Cyclic voltammetric experiments were performed in an electrochemical cell containing a 

three electrode assembly. Gold nanoparticles were immobilized on the glassy carbon 

electrode and employed as the working electrode, platinum wire as the auxiliary 

electrode, and Ag/AgCl/saturated with 3.0M KCl was employed as the reference 

electrode. Initially, cyclic voltammeteric experiments were performed using 

[K4Fe(CN)6]
3-/4-

 (a negatively charged redox probe ) and [Ru (NH3)6]
3+/2+

 (a positively 

charged redox probe). Figure 3.18 and 3.19 represents the background subtracted cyclic 

voltammogram obtained at a glassy carbon electrode modified with 20 nm GNPs 

immobilized on to a glassy carbon electrode in 1.0mM [Ru(NH3)6]
3+/2+ 

/ 0.5M KCl and 

1.0mM K3Fe (CN) 6
3-/4-

 / 0.5M KCl respectively. The CV of GNPs in [Ru(NH3)6]
3+/2+ 

 

exhibited a reduction and oxidation peak centered at 0.14V and 0.08V respectively with a 

∆Ep value of 60mV confirming a one-electron transfer. On the other hand, the cyclic 

voltammetry of GNPs in [K3Fe(CN)6]
3-/4-

 exhibited reduction and oxidation peaks 

centered at 0.42V and 0.36V respectively with a ∆Ep value of about 60mV indicating a 

one electron transfer. From these experiments, it was evident that the gold nanoparticles 

(20nm) provides an effective platform for the electron transfer to occur thereby 

confirming the suitability of the nanoparticles as a sensing platform for various 

bioanalysis. 
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Figure 3.18 C.V of GNPs 20 nm.E|V vs. Ag|AgCl in [Ru (NH3)6]
3+/2+

 

 

Figure 3.19 C.V of GNPs 20nm.E|V vs. Ag|AgCl in [K4Fe (CN) 6]
3-/4-

  

3.3 Characterization of Gold-Polymer Composites 

The characterization techniques employed for the study of POAS-GNPs nanocomposites 

includes UV-Vis, TEM and SERS. Further, the electrochemical properties were also 

5µΑ5µΑ5µΑ5µΑ    
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studied in detail in the next section. The UV-Visible spectra of the composite materials 

deposited on the quartz substrate were recorded by a UV–Vis spectrophotometer. Figure 

3.20 and 3.21 shows the optical spectrum of the GNPs and GNPs-POAS. The 

characteristic peaks of POAS were positioned at 330 nm (π−π∗ transition) and at 610 nm 

(n-π∗ transition). In addition, a peak was observed at ~500 to 550 for the GNPs-POAS 

composite due to the presence of gold nanoparticles in the POAS matrix. 

 

Figure 3.20 UV-vis Spectra of POAS 
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Figure 3.21 UV-vis Spectra of Composites POAS- GNPs 

TEM images of the POAS and the composites of GNPs-POAS are shown in the figure 

3.22 (a) and 3.22 (b). The TEM image of composites shows that the gold nanoparticles 

are well dispersed in the polymer. 

 

 

 

 

 

 

 

GNPs-POAS Absorption 
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(a)                                                                         (b) 

Figure 3.22 TEM Images, (a) POAS, (b) POAS-GNPs 

The composite films made on silicon substrate were studied by Fourier Transform 

Infrared (FTIR) spectrophotometer. The IR spectra of POAS and GNPs were shown in 

figure 3.23. The gold nanoparticles exhibited a distinct peak at 1675 cm
-1

.
 
Moreover, the 

other peaks assigned for both POAS and gold–POAS composite are as follows. The peak 

observed in the POAS and GNPS-POAS ( Strech.quinoid ring) C=C  (1578 cm-
1 

), C=C 

stretch, benzenoid ring (1461,1412 cm
-1  

 in GNPs –POAS) and C-N stretch (1343 cm-

1,1337cm
-1 

N=Q=N (Q= quinoid ring) 1198 cm
-1 

C-H stretching vibration,
 
1278 cm

-1
 . 

Furthermore, the FTIR analysis indicated that the composites of gold–POAS exhibited a 

better peak intensity.  
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Figure 3.23 FTIR of (a) GNPs, (b) POAS, (c) POAS-GNPs 

3.4 Electrochemical Characterization of GNPs-POAS 

The electrochemical kinetics of  composites of POAS and GNPs-POAS observed in 0.1M 

HCl were shown in figure 3.24 and 3.25 respectively. Cyclic voltametry was performed 

in an electrochemical cell containing a three electrode set-up. Gold nanoparticles were 

immobilized on to the glassy carbon electrode and employed as the working electrode; 

platinum wire was utilized as the auxiliary electrode and Ag/AgCl as reference electrode. 

All the cyclic voltameteric experiments were performed in 0.1M HCl at different scan 

rate (100 mVs
-1

, 50 mVs
-1

, 20 mVs
-1

,1mVs
-1

). Figure 3.24, represents the cyclic 

voltammograms of POAS in 0.1M HCl at different scan rates. 
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Figure 3.24 CV of POAS in Three Electrode System in 0.1M HCL 
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Figure 3.25 CV of POAS -GNPs in Three Electrode System in 0.1M HCL 

On the other hand, the voltammograms of GNPs-POAS composites exhibited a pair of 

redox waves at 0.4V and 0.36V. However, the peaks are not well-defined. Of these two 

peaks the one at 0.18V was identical as that of polyaniline and the peak present at 0.4V 

corresponds to the oxidized form of POAS. In other words, the peak at 0.4V corresponds 

to the oxidized state whereas the peak at 0.36 V corresponds to the reduced state of NGs-

POAS system. Interestingly, the peak at 0.4V, which is due to quinoid structure in NG-

POAS, has a higher current than POAS as shown in Figure 3.25. Furthermore, Figure 

3.25 indicates the characteristic peak of polyaniline systems of the polymer which was 

not observed in the case of polymer alone as shown by figure 3.24 thereby demonstrating 

10 µµµµA 
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that the presence of Gold nanoparticles were not only useful for the redox reaction but 

also provide excellent probe for the polymer composite synthesis. 
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Chapter 4: Applications of GNPs 

4.1 Introduction 

In this chapter, we focused on the application of the chemically synthesized gold 

nanoparticles. The non-toxic nature of GNPs makes them a potential candidate for all the 

biological studies including the detection of biomolecules and in cancer therapy [36-38]. 

The inhibition of Respiratory Syncial Virus (RSV) by GNPs was described in detail in 

this chapter. RSV is the main cause of the pneumonia in children and may cause 

respiratory disorders [39-40] Studies on the interaction of gold nanoparticle with the 

protein Bovine Serum Albumin (BSA) were also described. Further, we have also 

described about the electrochemical detection of dopamine, uric acid and ascorbic acid 

using gold nanoparticle modified glassy carbon electrode. Finally, the applications of 

gold nanoparticles as catalytic activator for gas sensing have been discussed. 

4.2 RSV Inhibition by GNPs 

4.2.1 Cells and Virus 

HEp-2 (Human body Type-2 epithelial cells) cells were purchased from American Type 

Culture Collection (ATCC, Manassas, VA; CCL-23) and were propagated by using 

Minimum Essential Medium (MEM) supplemented with 10% Fetal Bovine Serum (FBS), 
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2 mM L-Glutamine, 75 U/ml Penicillin, 100 mg/ml Kanamycin and 75 mg/ml 

Streptomycin. Human RSV Long strain was purchased from ATCC (VR# 26). Virulent 

RSV stocks were prepared and propagated in HEp-2 cells. RSV with multiplicity of 

infection of 4:1 was added to the flask and virus adsorption was carried out for 1h at 37
o
C 

in a humidified atmosphere with 5% CO2. MEM supplemented with 2% FBS and 2 mM 

L-Glutamine was added to the flask and infection of cells was observed for 3 days. RSV 

infected cells were harvested and cell suspension was subjected to 2 freeze-thaw cycles at 

-80°C followed by centrifugation at 3,000 rpm at 4°C to remove the cellular debris. The 

viral stocks were aliquoted and stored at -80°C on liquid nitrogen until further use. Viral 

titer of the prepared stock was determined by plaque assay and had a titer of 10
5
 p.f.u / ml 

[39-40]. 

4.2.2 Preparation of GNPs and RSV Mixture 

The gold nanoparticles (50µL/µL) were mixed with 20µL RSV containing 100 PFU, and 

incubated for 40 minutes at room temperature. 

4.2.3 RSV Inhibition Experiment 

RSV inhibition experiment was carried out by employing different concentrations of 

GNPs samples for RSV inhibition studies. The GNPs were mixed with 20mL of RSV 

containing 100 PFU and incubated for 30 minutes at room temperature. The GNPs-RSV 

complex was then added to 60–70% confluent HEp-2 cells in 8-chamber slides to observe 

the inhibition of RSV infection. HEp-2 cells infected with RSV without GNPs were used 
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as a positive control. The inhibition of RSV infection by each GNP sample was analyzed 

visually using an inverted light microscope as well as by indirect immunofluorescence  

 using an Olympus IX51 immunofluorescence microscope. For indirect 

immunofluorescence, HEp-2 cells were grown in 8 chambered slides (BD Biosciences) 

for 24 h to 60% confluency. The cells were washed with phosphate buffered saline (PBS) 

and cured using 10% trichloroacetic acid for 15 min. The cells were then successively 

washed in 70%, 90%, and 100% ethanol for 5 min (in either case). Next, the cells were 

washed using PBS and incubated in blocking buffer (3% dry milk in PBS) for 30 min and 

washed thrice with PBS. The cured cells were incubated for 1h at room temperature with 

monoclonal mouse antibody to RSV F (Biodesign International) in antibody buffer (2% 

dry milk in PBS). The cells were washed three times for 5 min in PBS and then incubated 

for 1 h at room temperature with FITC-conjugated goat anti-mouse IgG (H+L) secondary 

antibody (Southern Biotechnology) in antibody buffer. Non-specific binding will be 

eliminated by washing the cell thrice in PBS and the cells were visualized using a 

fluorescent microscope [39-40]. The schematic of RSV inhibition experimen is 

represented in figure 4.1. 

  

Figure 4.1 Schematic of RSV Inhibition Experiment 
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Figure 4.2 RSV Inhibition by Immunofluorescence Cells Infected with RSV 

 

 

Figure 4.3 Cells Infected with RSV Mixed GNPs (5µl/ml) 

 

(a) 

(b) 



www.manaraa.com

 

53 
 

  

Figure 4.4 Cells Infected with RSV Mixed with GNPs (50µl/ml) 

 

 

Figure 4.5 Cells Infected with RSV Mixed with GNPs (100µl/ml) 

 

(c) 

(d) 
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Figure 4.6 Cells Infected with RSV Mixed with GNPs (200µl/ml) 

GNPs were mixed with 100 PFU of RSV and added to the cells to determine the 

inhibition of infection. Reduction in cytopathic effects (syncytia) in HEp-2 cells was 

observed to determine the extent of RSV infection Cell infection was monitered by 

immunofluorescence. Cells infected with RSV mixed with GNPs clearly showed a 

significant reduction in RSV infection compared to the cells infected with RSV alone. 

The results of the present study indicated that GNPs (10 nm) can inhibit RSV infection 

and in future it can be employed for the therapeutic purposes. 

4.3 Biosensing Applications of the GNPs  

Gold nanoparticles synthesized by the chemical methods have been utilized for the 

sensing application of neurotransmitters such as dopamine and the ascorbic acid 

 

 

(e) 
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4.3.1 Detection of Neurotransmitters such as Dopamine, Ascorbic Acid 

For many years, the study of brain and its associated processes have been an area of 

research to scientists with work focusing on issues ranging from the whole brain to single 

cell. Brain is one of the most complex biological matrices and is composed of 

approximately 100 billion nerve cells called neurons. Dopamine is an endogenous 

chemical compound that was discovered to be a neurotransmitter by Arvid Carlson in the 

1950s. Neurotransmitters are chemicals that facilitate the transport of the information 

between the neurons across the gap. Dopamine participates in the important brain 

functions and acts as a neurotransmitter and neuroharmone, which inhibit the secretion of 

prolactin from the pituitary gland. Dopamine produces an effect on the sympathetic 

nervous system when used as a medication.  Broadly, neurotransmitters were classified as 

indolamine, catecholamine, peptides, epinephrine, norepinephrine, amino acids, and 

acetylcholine. The structure of dopamine and ascorbic acid is shown in figure 4.7. 

 

(a) Dopamine                                                   (b) Ascorbic acid 

Figure 4.7 Structures of Dopamine and Ascorbic Acid 
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4.3.1.1 Importance of Monitoring Neurotransmitters 

Monitoring various neurotransmitters is vital to understand the mechanism and pathways 

that leads to various behavioral changes and disorder. The neurotransmitters such as 

dopamine; ascorbic acid plays an important role in the regulation of motor function and 

associated with the mood swing and emotions. It is important to understand the 

mechanisms and kinetics of neurotransmitters such as dopamine. The low concentration 

of dopamine leads to Parkinson’s disease, whereas the higher concentration causes 

Schizophrenia. Neurotransmitters including dopamine, ascorbic acid, uric acid, 

epinephrine and norepinephrine can be very easily oxidized electrochemically by 

applying a suitable potential. Based on this technique, in this work we employ glassy 

carbon electrode modified with gold nanoparticle as an electrode material to 

electrochemically detect the neurotransmitters [41-44]. Initially, glassy carbon electrodes 

were modified with gold nanoparticles and employed for the analysis. The modification 

of glassy carbon electrodes was performed as follows: The gold nanoparticles were 

synthesized chemically as described before by the citrate reduction method. 2µL of the 

GNP solution was casted to the glassy carbon electrode surface and dried at room 

temperature. This resulted in a uniform thin layer of GNP’s on the electrode surface.  In 

order to characterize the electrochemical redox behavior as well as the charge transfer 

properties of the GNPs, initially we employed different charged redox probes namely 

hexamine ruthenium (III) chloride and potassium ferricyanide. Cyclic voltammetry of 

these GNP’s were performed initially in 1.0 mM [Ru(NH3)6]
3+/2+ 

, a positively charged 

redox probe. Results indicated a well reversible redox peaks and confirming a one 
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electron transfer at the electrode surface. Following this, we have then performed the 

cyclic voltammetry of GNP’s in 1.0 mM [Fe(CN)6]
3-/4-

, a negatively charged redox probe. 

From these results, it is evident that GNP’s are redox active irrespective of various 

charges present on the redox analyte, thereby, confirming its charge independent redox 

characteristics. 

Further, we have evaluated the suitability of GNP’s for the detection of certain important 

neurotransmitters such as dopamine (DA), ascorbic acid (AA). Additionally, we have 

also compared the performances of different sized GNP’s (10 nm and 20 nm). Cyclic 

voltammograms of 20 nm GNP’s in 1.0 mM DA, 1.0 mM AA are shown in Fig 4.8 and 

4.10 respectively. On the other hand, upon comparing the signal to noise ratio and the 

limit of detection there is no marked difference in their response. Following this, we have 

also evaluated the effect of scan rate on the performance of GNP’s (both 10 nm and 20 

(nm). In both cases, the plot of square root of scan rate against current density was found 

to be linear indicating a diffusion controlled process as shown in figure 4.9. We can 

conclude that GNP’s are electroactive and can be employed for the detection of redox 

active biomolecules. 

 



www.manaraa.com

 

58 
 

 

Figure 4.8 Cyclic Voltammogram of Dopamine in PBS 
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Figure 4.9 Scan Rate /Current Density Plot of Dopamine 

Above mentioned analysis indicates that GNPs can expose itself completely to the 

analyte and provides eficient active sites essential for the redox reaction. In summary, 

we have studied the quasi-reversible and diffusion controlled electron transfer 

kinetics of dopamine, ascorbic acid at GNPs electrodes. The electrode response is 

stable over time with negligible electrode fouling. 
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Figure 4.10 Cyclic Voltammogram of Ascorbic Acid in PBS 

4.4. Analysis of GNPs-BSA Pair 

In the literature there are several reports available that describes the interaction of GNPs 

and Bovine serum albumin [45-48]. The interaction was highly dependent on the size and 

concentration of GNPs. In general, the binding of GNPs with protein shows variation in 

the Surface Plasmon Resonance. 
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Figure 4.11 UV-vis Spectra of GNPs and GNPs-BSA (1~10 nm), (2~30nm) 

Figure 4.11 shows the absorption spectra of GNPs and GNPs-Protein. As shown in the 

spectra it was obvious that the binding of protein to GNPs have altered the surface 

properties of the gold nanoparticles and caused the red shift in the absorption peak. 

Figure 4.12 and 4.13 represents the TEM images of GNPs and GNP-BSA particles. It 

was found that the GNPs with ~10 nm diameter showed dense aggregates due to the 

GNP-BSA interaction. However, GNPs with particle size > 20 nm does not exhibited 

much interaction with BSA. As the size of the nonmaterial decreases the efficient number 

of atoms increases in the surface which provide more efficient binding of the BSA onto 

NPs [45]. This observed phenomenon was further confirmed by the TEM measurements. 
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Figure 4.12 (a) TEM of GNPs (~10 nm) 

 

Figure 4.12 (b) TEM of GNPs–BSA Complex (GNPs~10 nm) 

 

~10nm 

~10nm 
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Figure 4.13 (a) TEM of GNPs (~35-40 nm) 

 

Figure 4.13 (b) TEM of GNPs-BSA (~35-40 nm) 

Figure 4.12 Gold nanoparticles (a) GNPs 10nm, (b) 10 nm GNPs-BSA complex and 4-13 

(a) and 4.13 (b) 30 nm GNPs and 30 nm GNPs-BSA respectively. This experiment shows 

that there is interaction of gold nanoparticles with the BSA. The interaction study was 

~35-40nm 

~35-40nm 
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done by UV-vis spectroscopy and TEM. The formations of aggregates of gold 

nanoparticles were observed by the TEM. 

4.5 Catalytic Application of Chemically Synthesized GNPs  

4.5.1 Au Decoration on ZnO Nanowires 

In this work the chemically synthesized gold nanoparticles were utilized as catalyst for 

ZnO based gas sensors. TEM image in figure 4.14 (a) shows the size and shape of gold 

nanoparticles used for this purpose. ZnO nanowires were grown using vapor liquid solid 

growth method in our laboratory for other projects. Au nanoparticles were decorated on 

the body of the VLS grown ZnO nanowire using solution method to test their catalytic 

behavior. For this purpose, the ZnO nanowires were removed from the silicon substrate 

by sonification in methanol solution and a fixed quantity of Au nanoparticle solution was 

added to the ZnO nanowire solution. The resulting solution was mixed properly to allow 

the deposition of metal nanoparticle on the ZnO nanowires surface using slow stirring of 

the solution. Figure 4.14 (b) show the morphology of Au decorated ZnO nanowires. The 

white spots on the surface of ZnO nanowires are spherical gold nanoparticles in the size 

range 5-8 nm. 
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Figure 4.14 (a) TEM Image of GNPs, (b) SEM of ZnO Nanowire-GNPs 

Au decorated ZnO nanowires were deposited by using drop cast method on top of the 

electrodes on the silicon substrate in order to develop the sensor. 

(a) 

(b) 
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The deposition of nanowires on substrate is followed by drying at 100
o
C in inert 

atmosphere for the duration of one hr. to get good electrical ohmic contact between the 

nanowire and electrodes. A proper deposition of the Au- ZnO nanowire on the electrodes 

shows a resistance value in the range of 4 k Ohm to 7 kOhm. Once the contacts are 

developed any two of the four electrodes were selected to measure the resistance of the 

sensor. The ZnO nanowire sensors were tested for gas sensing behavior by measuring the 

resistance in presence of compressed air and carbon monoxide using an electrometer 

(Keithley 2400) and a gas controller (MKS 247).Carbon monoxide sensing behavior of 

ZnO nanowire and Au decorated ZnO nanowires based sensors was studied in terms of 

variation of resistance with time for repeatedly switching of the gas from synthetic air 

(O2) to various concentration of carbon monoxide (CO). The sensor signal is defined as 

percent change in resistance of the nanowire film upon CO exposure. If Ra is the 

resistance in air Rb is the resistance in presence of CO then the sensor signal is defined as 

[((Ra − Rb)/Ra) × 100%. Figure 4.15 shows the schematic of CO sensor assembly. There 

was no change in resistance (~1MOhm) for only ZnO nanowires at room temperatures 

for any concentration of CO between 100 to 1000 ppm [53]. 
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Figure 4.15 Assemblies of CO Sensors 

However, for the Au decorated nanowires we have observed a decrease in resistance for 

all values of CO concentration at room temperature. Figure 4.16 shows show the gas 

concentration vs. sensor signal [(Ra − Rb)/Ra) × 100%] data observed for the nanowire at 

room temperature while 8(b) show the sensor’s performance at 200
O
C. On decorating the 

GNPs at the room temperature gas adsorption can be made possible due to the presence 

of Au on the surface. Ionsorption of oxygen ions can occur on gold nanoparticle surface 

at room temperature due to the highly conductive nature and availability of free electron 

in gold.  The conductive nanoparticle thereafter spills the gas over semiconductor surface 

via spillover effect [49-53]. 
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Figure 4.16 Variation of Gas Sensor Signal with CO Gas Concentration for ZnO and Au -

ZnO Nanowires at (a) Room Temperature and (b) 200
O
C  
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The spillover effect via catalytic activation due to gold nanoparticle and chemical 

sensitization is observed to be responsible for room temperature CO sensing by Au 

decorated ZnO nanowires. Metal nanoparticles act as catalyst in chemical sensitization 

and improve the sensing characteristics. This study shows the applicability of gold 

nanoparticle as catalyst for gas sensor applications [53]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

70 
 

 

 

Chapter 5: Conclusions 

The synthesis of gold nanoparticles with different shapes and sizes could be done by 

chemical method. The shape of the gold nanoparticles varied from nanospheres, 

nanocubes, triangles and nanooctaguns. Control on the temperature, dilution and 

concentration of the reducing agent has been found to play an important role in 

definening the structure of gold nanoparticles. 

An attempt has been made to synthesize the composites of POAS-GNPs by the oxidative 

polymerization technique. The composites of GNPs-POAS were studied by UV-vis 

spectroscopy, FTIR and TEM techniques. It has been found that the properties of this 

new material formed by the gold nanoparticles and conductive polymer POAS shows 

remarkable difference than POAS alone.  

The systematic electrochemical studies of the gold nanoparticles are carried out in 

different solutions of electrolyte. Gold nanoparticles are casted on the electrode surface in 

order to study biosensing applications. The glassy carbon electrode surface is modified 

with the gold nanoparticles with different sizes for the detection of dopamine and 

ascorbic acid. Gold nanoparticles immobilized on the surface of glassy carbon provides 

better template for the detection.  

The studies of the interaction of the gold nanoparticles with Bovine serum albumin in 

aqueous is done by UV-vis spectroscopy, and TEM techniques. The interaction leads to 
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the red shift of the SPR band of the gold nanoparticles. Gold nanoparticles can also be 

utilized as a catalyst. 
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Chapter 6: Future Work 

Future work can be done in the following areas. Further studies on this area will 

definitely enhance the utilization of gold nanoparticles for the wide range of research 

studies. 

(1) Gold nanorods and functionalized biocompatible gold nanoparticles are emerging as a 

promising tool for cancer diagnostic applications and medicine. So the future work can be 

done on their synthesis and fabrications to explore their other applications. 

(2) The gold nanorods can also be utilized as biosensor applications. Biosensors are very 

active and interesting field of research. Metal nanoparticles can be synthesized and 

fabricated for the utilization of as template to study the various biological objects like 

protein, DNA and Nucleic acid. 
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